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A variety of new combinatorial techniques for computing with groups Is re-
viewed. It 1s shown how to apply these techniques to construct randomized
algorithms for solving fundamental problems. These are group membership
and base change (for permutation groups) and normal closure (for both per-
mutation groups and matrix groups over finite fields). As with any randomized
algonthm, the reliability must be characterized. This is done in terms of the
concepts of Monte Carlo and Las Vegas defined in the text.

1. INTRODUCTION

Randomization has long been recognized as a powerful tool that can signif-
cantly speed up algorithmic solutions to important problems in computational
eroup theory. This has been a strong motivation for our own work. Unfor-
tunately, many previous attempts to use randomness are heuristic, and lack
theoretical results on the running time or on the probability of correctness. A
theorem concerning correctness puts the algorithm on a sounder mathemati-
cal basis. This often provides the basis for improving the algorithm based on
a greater knowledge of internal mathematical structure, rather than having to
rely on more empirical techniques.

While the desirability of theoretical guarantees of correctness is recognized,

such theorems typically elude researchers for one of three reasons:

e The distribution of the chosen “random” elements may not be character-
ized by a probabilistic distribution suitable for analysis;
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e an a priorlt bound may not be known on the probability that a random
element from a known distribution satisfies a required property; or

a bound (probabilistic or deterministic) on the required number of opera-
tions cannot be provided.

There are several important examples in the literature, which currently rely on
such heuristic techniques. A well-known technique dating back to Jordan ([34],
Theorem 13.9) recognizes whether a subgroup G of S,,, specified by a set of gen-
erators, contains A,,. The test consists of first verifying primitivity, which is fast,
and then attempting to find an element with a special cycle structure. A similar
approach applies to a recent innovative method of Neumann and Praeger [31] for
recognizing when a subgroup of the general linear group GL(n, q) specified by a
set of generating elements “essentially” contains SL(n,q). Along similar lines is
the well-known heuristic for finding an element of prime order p in a permutation
group G, where p divides |G|. The algorithm selects randomly chosen elements
until a p-singular element is found. Only recently was this heuristic justified
by a result of Kantor, Seitz and Spaltenstein, showing that the probability of
success Is at least 1/n. Finally, Leon’s random Schreier-Sims algorithm [29] is
extremely fast and accurate in practice, but it relies on purely empirical param-
eters, and never provides a theoretical estimate of the probability of correctness
of its answer.

We say that a Monte Carlo algorithm is a randomized algorithm whose relia-
bility (probability of success) can be increased at the cost of additional time. A
Monte Carlo algorithm is Las Vegas, if it never returns an incorrect answer.
(Hence, a Las Vegas algorithm may only return a correct answer or “don’t
know”.) An algorithm is exponentially reliable if the probability of returning an
Incorrect answer or “don’t know” is bounded above by exp(—n), for n the input
parameter.

We now present an overview of recent developments in Monte Carlo algorithms
for computing with groups. Some of the key ideas described have been developed
in collaboration with our colleagues Laslo Babai, Eugene Luks and Akos Seress.

In this paper, we focus on algorithms for solving three fundamental problems
involving permutation groups of an n-element set .

o Compute a strong generating set relative to a fixed ordering of Q for a
subgroup G = (S) of Sym(f2). This is analogous to putting a matrix in
upper triangular form.

o Given a strong generating set S for G C Sym() relative to an ordering
«, compute a strong generating set S’ for G relative to a new ordering o’.
T'his 1s a change of base, analogous to a change of basis for a vector space.

o Given subgroups H = (S) and G = (T) of Sym(Q), find a generating set
for the normal closure (H®) of H under G. (Group operations on G mod
H (G/H) are well-defined only when H is normal in G. The normal closure
of H under G is the smallest normal subgroup of (H,G) containing H)
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article in this issue [28] provides several excellent exam ples of their use. Our
approach will show that these problems are very much related and that progress
on one front usually results in progress on a different front. For exam ple, fast
Monte Carlo algorithms for performing base change [20] and normal closure [5]
were key ingredients in achieving improved running times for Monte Carlo OTOUP
algorithms for testing membership in both “small” and “large” base permutation
groups.

In Section 2, we present a general framework for the incremental construc-
tion of subgroups through random elements. It is well known how to do this
with uniformly distributed random elements ([2], [29]), but the construction of
such elements appears no easier than testing membership. What is significant
and new in the methods described in this paper is that for certain fundamental
problems, 1t 1s not necessary to have uniformly distributed random elements. We
will show that group elements drawn from a very different distribution, called
random subproducts, can be used to simulate those properties of uniformly dis-

tributed random elements required for such constructions but at much smaller
cost. We demonstrate the utility of these ideas by deriving elementary Monte

Carlo algorithms for group membership and normal closure that have expo-
nentlal reliability. These algorithins are appealing because they have worst case
asymptotic running times that are better than the practical algorithms currently
in use although not as good as algorithms that will be described later. Further-
more, these methods apply to the more general black box groups [4] and hence to
matrix groups as well. The technique for incremental construction of subgroups
1s very effective when used in conjunction with a Monte Carlo algorithm for
reducing the number of generators for a group (Theorem 2.9). An interesting
tency of a subgroup of GL(n, q), the general linear group of dimension n over the
(alois field GF'(q), which takes time polynomial in n and log g. (All logarithins
are taken to base 2.)

In Section 3, we describe a technique derived from random subproducts, re-
ferred to as random prefizes, which leads to a Monte Carlo normal closure al-
gorithm for permutation groups of degree n that takes time O(n?log*n) =
O™~ (n?). In general we use the notation O~ (f(n)) (read as “soft oh”) to stand
for O(f(n)log”n) for some constant c.

In Section 4, we review recent work on membership algorithms for permuta-
tion groups. We first present two Monte Carlo algorithms which are based on
rather different combinatorial ideas. The first is a general group membership
algorithm with running time O(n° log_zj2 n), which relies heavily on the normal
closure algorithm described in Section 3 and the primitivity structure of G [5].
The second algorithm is designed to be most effective on small base permutation
groups. These are families of groups for which log |G| < log:j n. This class of
groups 1s particularly interesting since the permutation representations of non-
alternating simple groups satisfyy this condition. For such groups, the algorithm
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has running time O~ (n), which is “nearly linear” in n. (A more precise time I1s
given in Section 4.1 in terms of the base size.) The key ideas behind the small
base algorithm are the “local-expansion” lemma of Babai [4] and a method for
building “shallow” Schreier trees which is a constructive adaptation of a tech-
nique developed by Babai and Szemerédi [11] in a more theoretical context.

We complete our discussion of group membership by discussing a new unified
approach which achieves superior asymptotic worst case running time in the
general case. The simplest specialization to small base groups is not quite as
good, although more other variations are currently under consideration. Never-
theless, this approach leads to a very simple algorithm which we believe has the
potential for faster implementations.

Finally, we conclude in Section 5 with a discussion of base change algorithms
for permutation groups. It is interesting to note that our original randomized
base change algorithm [20] was developed for its own merit and only later proved
crucial for the group membership algorithms of Sections 4.1 and 4.2. This ex-
perience was then reversed when combinatorial methods developed in the small
base group membership algorithm were later found to be important for the cyclic
base change algorithms [21].

2. CONSTRUCTING SUBGROUPS THROUGH RANDOM ELEMENTS

Many of our group computations involve the incremental construction of a
subgroup H of (G satistying certain conditions. For example, H might be the
subgroup stabilizing a point in a permutation representation of G, or the nor-
mal closure of a subgroup of G. Typically the process starts with an initial
approximation Hy to H, with H( the trivial group unless additional information
1s available. An increasing sequence of subgroups {H;} is then constructed with
a generating set for H; obtained through the addition of a single generator to
a generating set for H; ;. The expectation is that after a finite initial subse-
quence, all subgroups are equal to H. The most costly part of such computations
1s usually the selection of an element which, with positive probability exceeding
some fixed p > 0, will strictly enlarge H;_1 to H; whenever H;,_; < H. Suppose
such a selection procedure is available and an upper bound L is known for the
maximal length L of a subgroup chain of H. Then a standard application of
Chernoff’s bound [17] (see for example [26], Theorem 2.3, or [20], Theorem 3.5)
yields the tollowing inequality for constant ¢ with ¢ > 1/p.

CHERNOFF’S BOUND: (specialized to subgroup chains)
Prob(Hf.1 = H) > 1 —exp(—(1 — 1/pc)’pcL/2)

Random elements have this characteristic of enlarging a constructed subgroup
with probability at least 1/2. However, truly random elements are usually
achleved via construction of a strong generating set. Random subproducts, and
variations thereof, share this characteristic of incrementally enlarging a subgroup
with positive probability, while allowing one to avoid the costly intermediate step
of constructing a strong generating set.

The tundamental theorem on random subproducts is presented, along with a
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short proof, to demonstrate the simplicity of the underlying ideas.

DEFINITION. Given a generating set S = {¢;,..., g, + for a group G, a random
subproduct is an element w of the form

el €9 o
W = g, go - gfr*r 3

where e; = 0 or 1 with probability 1/2.

PROPOSITION 2.1 (from [5]). Let S generate a group G and let H be an arbitrary

A

with probability at least 1/2.

PROOF. Let S = {g1,...,9,}. There is a largest i for which g, ¢ H (since
H # G). So, w can be decomposed into the form w = ug; ‘v, with g; € H and
gi+1,---,9, € H. Hence, v € H.

We consider two cases. First, assume u € H. With probability 1/2, ¢; = 1,
and so w = ug;v € H. In the second case, assume u € H. With probability 1/2,
e; = 0, and so w = uv € H. This proves the proposition.

J

T'his leads to a suite of algorithms for solving fundamental problems in com-

putational group theory with dramatically reduced time and space complexity.
T'hese algorithms allow:

e constructions of a generating set of size O(L) for a subgroup of H in G
given a generating S for G and a transversal (defined in Section 2.1) for
H in G using O(L(|S| + |G : H])) multiplications [26].

e eclementary normal closure of H in G where H and G have generating sets
1" and S respectively using O(L(|S|+|7T"|)) multiplications and inverses [26].

e reduction of a generating set S for G to size O(L) using O(|S]|log L) mul-
tiplications [5].

e normal closure using random prefixes where H and GG are given by gener-
ating sets of size O(L) using O(L log* L) multiplications [5].

The first two algorithms described above are based on simple extensions of
random subproducts, random Schreter subproducts and random normal subprod-
ucts. In both cases, an element formed using these extensions has probability
at least 1/4 of enlarging the subgroup being incrementally constructed. The
random prefixes are a non-trivial variation of random subproducts, described in
greater depth in the section on normal closure.

2.1. Random Schreier Subproducts: Simple Group Membership

The central problem for group membership is construction of a strong gener-
ating set. Let G be a permutation group acting on an n-element set (2 with G
specified by a generating set S, and let o« = (a1, 9, ..., a,) be a fixed ordering
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of the points of Q2. The point stabilizer subgroup of G stabilizing «; (notated
Go,) is the subgroup {g € G: ;9 = a;}, where ;9 is the image of «; in
under the permutation g. The point stabilizer sequence of G relative to « is the
chain of subgroups

G=GYog®?...oqgn = {e}

where GV = Gaoyyvasry 1 < 7 < n, is the subgroup of G consisting of all

elements which fix each of the points o, 1 < 9 <1-1. 8 is called a strong
generating set for GG relative to « if

(SNG'N=GW, 1<i<n.

Construction of a strong generating set allows one to efficiently construct a
(left) transversal TV for a set of (left) cosets G(¥) /Gt as 4 varies from 1
to n. For groups H C (@, a left transversal of H in G is a set of left coset
representatives of H in G. With a family of such transversals {T(*} and with
g € Sym({2), either one can express g as a factored word, g,,_1G,,_o - - - g1, for
gi € T, or else conclude that g ¢ G. This solves the group membership
problem.

It is easy to show that given a group G(*) with generators S(*) and a transversal
T for G /GU+D | the set of Schreier generators,

{?.Lg(ug) 1: g & S(Z)au & T(Z)aw = T(l)yaug = afrﬁ}a

[/
generates GU+1)

While many previous algorithms used deterministic techniques to build a
strong generating set, randomized techniques have recently been found to have
faster complexities, and they also serve as an important technique in imple-
mentations. Let G be a finitely generated group with a generating set S =
{91,92,...,9s}, et H C G bea subgroup of finite index, and let T" = {¢,, ..., tn}
be a transversal of H in G. For g € G, let § represent the unique element t € T
such that gt € H. A random Schreier subproduct for H with respect to S
and 7" is an instance of a product (t19(21g)71)° (t2g(t2g) 1) - - - (¢, g(tng) 1t)en
where g is a random subproduct of S, and the e; are iIndependent random wvari-

ables uniformly distributed over {0, 1}. The proof of the next result is elementary
and 1s included for completeness.

PROPOSITION 2.2. Let G = (S) for finite S, and let H C G be a subgroup
of finite index. Let T' be a transversal for H in G. Then a random Schreter
subproduct for H with respect to S and T can be computed at the cost of O(| S|+
'T|) group multiplications and inverses. Further,

Prob(h ¢ K) > 1/4.

PROOF. Choose ¢ € T and 7 a maximal index such that og;(5g;)~! ¢ K for
some o € T'. (There exists such an ¢ since K C H is a proper subgroup, and the
Schreier generators generate all of H.)
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Given a random subproduct g on G, we show that with probability at least
1/2 there exists a 7 € T such that 7g(7g)~! ¢ K. Let u and v be prefixes and
suffixes of g uniquely defined by g = ug{*v. The calculations below implicitly
use the fact that 7y = Ty and hence Ty(Ty) ! 7y(Fy)~'. The argument
divides into two cases. In the first case, 7u(7u)~! € K for all 7 € T. So, with

probability 1/2, e; = 1, g = ug;v (and so u='g = g;v), and

I

cu~lg(ou=19)" ! = ocu=tuc! og,(7g;) " ggiv(ogiv) ' ¢ K.
€ K ¢ K € K

In the second case, there is a o/ € T such that o’u(c’u)™! ¢ K. So with
probability 1/2, ¢; = 0, g = uv, and

oc'g(a’g)™" = du(c’u)™' (cu)v(c’uv)" ! ¢ K.
N, pt—  ——— et
¢ K c K

Let h be a random subproduct on {7¢(7g)~': 7 € T}. If r¢(7g)~' ¢ K for
some 7 € T, then h ¢ K with probability at least 1/2. Since the exponents
{e;} € {0,1} for the random subproduct h are chosen independently of the {e;}
for g, there is an overall probability of at least 1/4 that h ¢ K. O

We can apply Proposition 2.2 in conjunction with Chernoff’s bound to obtain
the following result.

THEOREM 2.3. Let G be a group generated by a finite set S. Further, let L
be an a priort upper bound on the length of subgroup chains in G, and let T be
a transversal for H C (. Then one can construct a set of cL generators for
H (¢ > 4) with probability at least 1 — exp(—(1/4 — 1/¢)*2cL) wusing at most
cL(|S| + 2|T|) group multiplications and inverses.

For permutation groups, there is a bound L < 3n/2 on subgroup chains in S,,,
determined by Cameron, Solomon and Turull {16} (and an earlier, coarser bound
of 2n — 3 by Babai [3]). Theorem 2.3 can be applied to obtain an elementary
Monte Carlo group membership algorithm for a permutation group G which
requires O(n* + n?|S|) time. We present a sketch of the argument. Initially, let
H=G®? = G, and let T be a right transversal for H in G. Applying Theorem
2.3, 1t follows that H can be generated by ¢n random Schreier subproducts with
respect to S and T with probability at least 1 — exp(—(1/4 — 1/¢)?3cL). If we
choose ¢ = 27, then this probability will exceed 1 — exp(—2n). Each random
Schreier subproduct requires O(n? + |S|) multiplications which dominates the
running time. Iterating this step n — 1 times to obtain the successive point
stabilizer subgroups, requires O(n*) multiplications per step. The probability
of each step being correct simultaneously is easily seen to exceed 1 — exp(—n).
This leads to the following result.
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THEOREM 2.8 (from [26], Theorem 2.3). Let G = (S) be a finite group. Let L
be a known upper bound on the length of all subgroup chains in . Then for any
parameter p such that O < p < 1, there is a constant ¢ such that with probabulity
p one can find a generating set S' with |S'| = O(L), using O(|S
operations.

clog L) group

j
......

for solvability of a matrix group G = (S) with S a set of non singular n x n
matrices over GF'(q). The derived series of a group G is the chain of subgroups
G =Go2G, 2G2 D - where G, = ([G;,G;]) (the commutator subgroup).

el
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G is solvable if the series terminates in the trivial subgroup. If H = ([G, (:]) and

G = (5), then it is well-known that H can be constructed as the normal closure
of ({lg1, g2): gi1,g92 € S}) under G. This would suffice for an polynomial-time

L = n?log q suffices. The algorithm alternates between red ucing the size of the
generating set (Theorem 2.8) and computing generators for the next group in
the derived series via normal closure (Theorem 2.6). After L iterations, if each
of the resulting generators is the identity, then the algorithm asserts that the
group 1s solvable. Constants can be chosen so that the probability of error is
(2(1). Since each iteration takes time polynomial in n and log ¢ and since there
and log g. An analogous algorithm tests nilpotency using the descending central
series.

PROPOSITION 2.9 (from [5]). A subgroup of GL(n,q) can be tested for solvability
and nilpotency in the time for O(L°log L) multiplications and inverses, with
L =n*logg.

The estimate of L = n?log q is asymptotically tight. To see this, consider the
family of groups of unipotent matrices in GL(n,q) for ¢ = p” with p a fixed
prime and ¢ varying. Since it has order ¢"("~1)/2 it is a Sylow p-subgroup of
order p°8» In(n—1)/2  Hence for p fixed, L = (log, g)n(n —1)/2 = ©(n*logq)
for that family.

3. NORMAL CLOSURE: RANDOM PREFIXES

An alternative normal closure algorithm running in time O~ (n?) for permu-
tation groups of degree n is discussed next. The key idea is the use of random
prefixes to produce new elements for the group under construction.

DEFINITION. A random prefix of a sequence of group elements (g1, g2,...,9x) 18
an instance of a product of the first ¢ elements, for ¢ a random integer from 1
through k.

To see how random prefixes are used in the normal closure algorithm, assume
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that the maximal length of a chain of subgroups of G is L and that & and H are
each given by generating sets of size O(L). Let S and Sy respectively of size
O(L). For a suitably large m (m = Q(Llog® L)), form lists S and T of length
m nitialized with the generating sets for G and H respectively and padded to
the end with the identity element. Let r = ©(log(m)) and let m,,..., 7, be
random permutations of {1,...,m} chosen at the beginning of the computation.
Apply randomly chosen elements 7; and 7; to S and T respectively, let g be a
random prefix of S5 and h a random prefix of T™i. Replace one of the original
identity elements of 7" by h9. Then with fixed but arbitrarily high probability,
after O(mr?) rounds, the list T' will contain generators for (H). In Section 2.3,
we showed how to reduce the generating set T to one of size O(L).

The proof of correctness depends on being able to “spread out” the distance
between two arbitrary elements in the list S or T using some permutation in
Sm- A set of permutations having this property is called a set of e-spreaders.
The proof shows that the set of random permutations {my,..., 7.} C S, is in
fact a set of e-spreaders. This relies on the construction of special permutations
in S,,, called e-spreaders. Given an arbitrary subset of generators, at least one
of log L e-spreaders is guaranteed to permute a list of m generators, so that the
sum of distances of each element of the arbitrary subset to its nearest neighbor
from the same subset is bounded below by €. Efficient deterministic construction
of e-spreaders remains an important open question. An answer would allow a

modified normal closure algorithm achieving both exponential reliability and a
smaller time complexity.

THEOREM 3.1 (from [26], Theorem 3.5). Let G and H C G be finite groups and
assume all subgroup chains in G have length at most L. Assume further that GG
and H are given by generating sets of size O(L). Then one can construct O(L)
generators for (HY) with fized but arbitrarily high probability using O(L log* L)
group operations.

In the original Theorem 3.5 in [5], the time was reported as O(Llog® L),
whereas a more careful counting seems to show it as O(Llog® L). In the case of
permutation groups, L = O(n) and we have the following corollary.

COROLLARY 3.2 (from [26], Theorem 3.5). Let H and G be permutation groups
of degree n with H C G. Assume that both H and G have generating sets of
size at most O(n). Then a generating set of size O(n) for (HS) can be obtained
with fized but arbitrarily high probability using O(nlog* n) group multiplications
and wnverses. If G is drawn from a family of small base groups (for which
log |G| = O~(1)), then O™~ (1) such group operations are required.

4. GROUP MEMBERSHIP
From a complexity viewpoint, group membership is probably the problem
most studied in computational group theory. Originally, implementations of the

tormal algorithms were not competitive with a straightforward heuristic algo-
rithm such as randomized Schreier-Sims. We now have deterministic [22] and
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Monte Carlo implementations [6] using new ideas with provable complexities
that are competitive in implementations (see also [32]). Nevertheless, there is

||||||

membership will simultaneously satisfy the goal of having fast implementations
which have provable reliability and lower complexity:.

The notion of a base, along with the first polynomial-time group membership
algorithm, was Introduced by Sims [33]. A base for a permutation group G acting
on {)is a subset B C {2 such that g € (G is the identity if and only if 39 = 3 for
all 5 € B. This implies that log |G| < |B|logn. The base B is non-redundant,
if any proper subset of B is not a base. We will say that B = {815, 0k},
considered as a sequence, is non-redundant with respect to the given ordering if
Gpy,...picy 7 Gp,,...p;, forall 1 < i < k. If B is non-redundant (with respect to
any ordering), then

Bl < log |G| < |B|logn.

We tend to view the group membership problem as one that requires several
algorithmic techniques depending on the size of the input group. A family
of permutation groups G is a small base family if there is a constant ¢ such
that for any group G € G with degree n, there is a base for G of size M <
log”n. Alternatively, a small base family of groups can be characterized as
satisfying a bound |G| < O(log®™' n) for some constant ¢ and for all G € G. In
practice, we may choose ¢ = 2. In this case, the family of small base permutation
groups 1ncludes all permutation representations for the non-alternating simple
groups [15] (often base size less than 8 for groups acting on ten thousand or more
points). From a practical point of view, small base groups are the only groups
with which one can effectively compute in the case of “very large” n. This can
be seen from the fact that a strong generating set for GG relative to a base B, will
always require 2(Mn) storage, assuming that B is non-redundant. Although we
casually refer to the remaining groups as large base permutation groups, further
refinements are possible but will not be discussed here.

4.1. Small Base Group Membership

An algorithm was presented for computing a strong generating set |6], which
proves the following result.

THEOREM 4.1. Let G = (S) < Sym(Q), || = n, |S| = O(log |G]), and suppose
that the maximal size of a non-redundant base with respect to any ordering is
b = O(°\/n/logn). Then, with fired but arbitrarily high probability, a strong
generating set for G can be constructed in O(nblog® |G|logb) = O(n"/3 log®/3 n)
time. The constructed strong generating set supports membership testing in
O(nlog|G|) time and the memory requirement is O(nlog|G|).

This algorithm is referred to as the small base group membership algorithm,
because it is designed to be most effective on groups with a small base. For
such groups, log |G| < log® n and so the algorithm runs in nearly linear time.
Of course, this information is not known a priori and the algorithm makes no
assumptions about the nature of G.
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We now briefly describe the key ideas which lead to the removal of the quadratic
bottlenecks (O(n?) terms in the timing analysis) for the small base group mem-
bership algorithm.

4.1.1. Local Expansion in Combination with Random Subproducts

The following situation occurs in the usual “bottom-up” construction of a
strong generating set for G. Given a point x € {1,2,...,n} and a known strong
generating set for a subgroup H of G, test ift H = (G,. This usually requires
sifting O(n|S|) Schreier generators where S is a generating set for G. Each sift
takes time O(n) and so the test requires O(n*|S|) time. In effect, one is testing
for strong generation the set of generators consisting of the union of S with
generators for H.

The “local expansion lemma” for groups [4] is the basis for an efficient strong
generating test for permutation groups [6] which requires only O~ (|S|n) time
for small base groups with generators S. It states that any subset D of a group
(G which consists of words of length < ¢ in the generators S and satisfying
ID| < |G]/2, also satisfies

Dg — D|/|D| = 1/(4t)

for at least one generator g € (. The constant 4 was recently improved to 1
in [10], under certain technical assumptions.

The principle of the strong generating test is to identify D with all factored
words of G in S. If a data structure is available (such as short or cube Schreier
trees defined in the next section) for extracting the “known” coset representatives
of G /G+1) as a word of depth O™~(1), and if the currently “known” base is
of size O™~ (1), then ¢ can be bounded by O~ (1). So if |D| < |G|/2, there is a
g € S such that for random d € D, dg ¢ D with probability at least 1/4¢. This
test is repeated for each point stabilizer subgroup G(*) and strong generating set
G NS.

Random subproducts further improve the strong generating test [6], Lemma 3.4.
Instead of testing if dg € D for random d € D, and for each g € (G, it suffices to
test dw for w a random subproduct of the generating set S.

4.1.2. Schreier Trees

A critical choice in algorithm design is the choice of a data structure for
representing coset representatives of GG, in G. Schreter trees are often used for
their space-efficiency. A Schreier tree for G/G, is a directed labeled tree (T, .S)
where T is a tree with root x, nodes ¢ and edge labels chosen from S. Coset
representatives are obtained by taking the product of edge labels along a path
from the root to the specified node. Schreier trees require only O(|S|n) space,
but the cost of computing a single coset representatives can take time O(n?) in
the case of trees of depth n. This condition can hold even for small base groups
(e.g. consider the Schreier tree constructed from a cyclic group of order n).

Ideally, one would like to build short Schreier trees, i.e., ones with depth
O(logn) using O(logn) edge labels. As part of our work on a fast random base
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changed [24]|, we showed how to construct short Schreier trees when random
elements are available. This is always the case, in the context where one is per-
forming a base change. The following observation is the key to short Schreier
trees. Although we discovered it independently, other authors have used vari-
ations of 1t from as early as 1965 for a variety of results ([1], [7], [27]). Most
recently, 1t was used as part of Babai’s result on local expansion [4].

Let G act transitively on 2 with |Q2] = n. For fixed P C ) and random ¢ € (.

E(|PY = P|) = P|(n — |P])/n

where E 1s the expectation over g € (. We identify P with the current nodes of
a partially built Schreier tree. As long as fewer than half of the elements of €0 are
in the tree, each random element has a fixed positive probability of expanding
the tree by a constant factor. Thereafter, with fixed positive probability, each
random element will decrease by a constant factor the number of nodes of €
not yet in the tree. It is still an open problem to deterministically build short
Schreier trees (depth O(logn)) efficiently. This would eliminate the need for
a source of random elements, which generally are not present in the course of
constructing a strong generating set.

The key step for the small base group membership algorithm was a construc-
tive adaptation of a result originally developed [11] in a purely theoretical con-
text, to deterministically build cube Schrezer trees of depth O(log|G|).

Given a sequence R = (g1,...,g,), define the cube over R as

C(R)=1{97'95>--- gi": ¢; € {0,1}}.
It is easy to see [11]| that for g € G
g¢ C(R)” ' C(R) <= |C(RU{g})| =2
Choosing such a g is made efficient by noting that

19 é ICZ?'(H)”IC?(R) = ¢ ¢ C(R)--JCW(R)

Thus, while 1687 C(R) # (), we can double the size of the cube |C'(R)| by
appending a g such that 19 ¢ 1C(R)7 C(R)  After at most log, |G| steps, we have
1C(R)T'C(R) — ). A Schreier tree with depth at most the twice the length of R
(at most 2log, |(G]) can then be built in the obvious way.

A slightly more subtle way of building Schreier trees which preserves the the-
oretical guarantee that the depth will never exceed 2 log, |G|, while working fast
In practice, is given by the following code.

C(R)|.

Procedure Build-Cube-Schreier-Tree(S, x)
Input: A generating set S for G and point z € 2.
Output: A cube Schreier tree 7 for ¢ with the property that Labels(7) =
RU R™!', where C(R) is a non-degenerate cube and depth(7) < 2|R|.

Initialize R «— ()

Set root(7 ) « {x}, Labels(7) + ()

While there exists g € S such that
Nodes(7 )9 # Nodes(7) do
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Let y € Nodes(7) such that y9 ¢ Nodes(7T)
Let h =Coset-rep(7,y)
Append hg to R [Note "9 ¢ Nodes(7 )]
Build a new 7 using breadth first search with RU R™! to level 2| R]
Return{7}
Using this procedure, it is possible to prove the following result.

PROPOSITION 4.2 (from [21]). Given a generating set S for G (not necessarily
strong) and an ordering o = (o, ..., an) of {1,2,...,n}, it is possible to build
Schreier trees for (SN Ga,...ai_,), with depth at most 2log |GV], 1 <1 < n, in
overall time O(nlog® |G|).

4.2. Large Base Group Membership Algorithm
A group membership algorithm was described in [5] which leads to the follow-
Ing result.

THEOREM 4.3 (from [5]). Given O(n®logn) generators of a finite permutation
group G acting on n points, one can construct a strong generating set for G in
O(n? log” n) Monte Carlo time.

The algorithm used to prove Theorem 4.3 will be referred to as the large base
group membership algorithm. In contrast to the previously fastest algorithm [8],
this new algorithm does not require results from the classification of finite simple
groups. The algorithm does run faster if appeal is made to the result from
the classification that only S, and A, are 6-transitive, although this can be
eliminated without aflecting the asymptotic running time by appealing to the
“Fast-Giant” routine described in [8]. The other key results which play a crucial
role In obtaining this result are the reduction of generators result described in
Section 2.3 and the O™~ (n?) normal closure result described in Section 3. The
algorithm outputs a data structure which supports membership testing and the
construction of random elements but not with respect to the traditional point
stabilizer sequence. In order to convert to the traditional strong generating set,
one may employ the random base change algorithm described in [20] and referred
to In Section 5.

4.3. Unified Group Membership Algorithm

The authors have attempted to derive a unified approach to both small and
large base group membership algorithms [26]. The results are partially successful
in that essentially the same approach leads to a O~ (n3) group membership
algorithm for general groups and a O™~ (n) group membership algorithm for small
base groups. However, as of this writing, the specialization to large base groups
leads to an improvement of Theorem 4.3, while the specialization to small base
groups leads to a timing analysis that is not yet as good as the one given in
Theorem 4.1. Nevertheless, the basic approach is extremely simple and has the
potential for leading to superior implementations. |

The key idea 1s a variation on the traditional sifting routine, which uses cube
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Schreier trees. The global data structure S represents a set of group elements

of G'Y) to be constructed, such that U?_,SU) generates GV, O is the cube over
S The cube D) = =1 (n=2) .. ) ig derived from (') and is used
purely as a notational convenience to describe the algorithm. One need not store
any data structure corresponding to DY) . The points {cv; } are the permutation
domain. Sets such as af " and o) D7D are re-computed whenever needed
(although caching schemes are possible).

Procedure Deep-Sift(z, g)
Input: 1 <1 <n-1; g¢ G (1)

(i)

1

Output: Either a level i/ > i and ¢’ € G*) such that |crf,“ gk ”1}| > 2
else “fail”; '

“fail” occurs if and only if g € D)™ D)
Time: O(nlog|G|)

If \af“){g’l}l > 2|a?m| then | add g to strong generating set |
Set S« S Y {g}
Set CV) «— C{g, 1} Return(z, g)

Else if 2 = n — 1 then
Return( “fail”)

. (i) vl i |
Else [ In this case, |a& 9Naf | #£0]

Set u «— arbitrary element of C*) such that o;% € oy
Set u' «+— arbitrary element of C'(¥) such that o;"9 = o;*
Return(Deep-Sift(i+1, ugu’~1))

| or

Cﬂﬁ)qwl

Verifying the output property of Deep-Sift reduces to demonstrating that the
oy — | S ) . .
property g ¢ DY) D) ig preserved in recursive calls. To see this, note that

g¢ DO DO = DWgn D@ = = DUFygn DUy = ()
= DUtlygu' "IN DU =@ = g & pU+H T pltl),

)1 ‘ - ct{g' 1 (1)
So g € DWW "D or else |a;, toh ) = 2|a$; | for some arguments to a recur-

sive call, 7/ and ¢’. The main point to observe is that in the course of attempting
to build a strong generating set, there can be at most log |G| successful calls to
Deep-Sift.

The main algorithm for constructing a strong generating set is fashioned from
Deep-Sift using a top-down approach. In the case of a general group membership
algorithm random Schreier subproducts are used. For the special case of small
base groups, the principle of local expansion is applied. The results for both
cases are summarized in the next theorem.

THEOREM 4.3(from [26]). Given a permutation group specified by a generating
set S, a strong generating set relative to any ordering can be computed in Monte
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Carlo time O(n®log |G|logn + n|S|log|G|) time with reliability at least 1 — 1/n
and with space requirements O(nlog|G|). With suitable modifications for the
special case of a small base, a strong generating set can be computed in Monte
Carlo time O(nb?log® |G|logn +n|S|log |G|) with the same reliability and space
requirements, where b 1s the size of a maximal non-redundant base with respect
to any ordering.

4.4. Implementation Notes

A completely faithful implementation of the algorithms described in Sections
4.1 and 4.2 would be both slower than optimal in practice and complex. The
complication can be estimated by the existing implementations. We have written
stralightforward 1,500 and 1,000 line implementations respectively in our LISP
system. Seress and Weisz have separately written a 2,000 line standalone C
version (plus 2,000 lines for user-friendly 1/0) for the (small base) algorithm in
which they “fine-tuned” the numerous parameters for optimal performance.

Thus, simplifying the algorithms is an important research goal. We believe
that such simplifications are also likely to yield faster implementations. We
believe the approach described in Section 4.3 will ultimately lead to algorithms
which are simpler to program and have superior performance. However, this has
not yet been demonstrated and is still under active investigation.

5. BASE CHANGE

Let & be a subgroup of S,, and let S be a strong generating set for the point
stabilizer sequence of G relative to an ordering a = «,...,a, of {1,2,...,n}.
A change of base is the construction of a strong generating set S’ for G relative
to a new ordering o'. Base change is a crucial algorithm in many important
group computations and plays an especially important role in many of the back-
tracking algorithms currently used to solve problems for which provably efficient
algorithms are not currently known. .

In [24], we presented a random base change algorithm which uses O(n log® |G|)
Las Vegas time and O(nlog|G|) space. (A Las Vegas algorithm provides a
deterministic guarantee of correctness, but not of running time.) For large base
groups, the complexity of this algorithm is inferior to the deterministic O(n°)
base change algorithm [12]. However, it has almost linear complexity for small
base groups. The key to deriving this result is the construction of short Schreier
trees (described in Section 4.1.2). Interestingly enough, both the large base and
small base group algorithms rely heavily on the random base change algorithm,
but for different reasons. The small base group algorithm requires the existence
of short Schreier trees and the large base group algorithm requires a base change
after completion in order to realign the original point set.

A cyclic base change occurs when « is obtained from o’ through a right cyclic
shift. In this case, a and o' satisfy the relationship

(Y

al

al,...,ar...,ag__l,asj...,C}_’n
al:'*'aaS)a?"a"-aas—-la---pan

|
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It 1s this special case of base change that is required in many backtracking
algorithms ({13], [14], [30]). It was shown in [12] that a deterministic cyclic base
change could be performed in time O(n*) using O(n?) space.

The next series of results concerns the important case of a cyclic base change.

THEOREM o.1. Given a strong generating set S for G, a deterministic cyclic base
change algorithm can be described which requires O(nlog® |G| + n|S| + nlogn)
time and O(nlog|G|) space.

The key to the proof of Theorem 5.1 is the technique described in [12] in
conjunction with Proposition 4.2. Randomized methods are the key to then
next theorem, which substantially improves Theorem 5.1 under a hypothesis of
avallability of fast generation of random group elements. This is satisified if a
short Schreier vector data structure is available.

THEOREM 5.2 (from [21], Theorem B). Assume that random elements can be
computed in time O(nlog|G|). Let b be the size of a base relative to some or-
dering o and let o' be an ordering obtained from « by a right cyclic shift. Then
a random cyclic base change algorithm can be described which has probability at
least 1 — 2/n of using O(nblog®n) time and O(nblogn) space. Furthermore the
algorithm returns a short Schreier vector data structure with respect to the new
ordering.

The proot of Theorem 5.2 depends on the following observation: if H is a
subgroup of a finite group GG, U a complete set of right coset representatives for
Hin G and S C G a set of mutually independent uniformly random elements
of G, then T = {gg~':g € S} is a set of mutually independent and uniformly
random elements of H (for g € G, g is the unique element of U so that Hg = Hg).
This observation is applied in the context of sifting down a subgroup chain of a
permutation group (. The required subgroup chain is defined by the problem
of performing a right cyclic shift. Initially, we have a set S of ¢logn mutually
independent elements of G for some constant ¢. As we move down the subgroup
chain, each element is multiplied by a suitable coset representative to produce
a set of clogn mutually independent random elements for the next subgroup in
the chain. These clogn random elements then suffice to build a short Schreier

tree for a suitable orbit of the subgroup. The proof of the last statement is in
Theorem 3.5 of [24].
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